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SUMMARY 

Lift, drag, and pLtchin-g-moment coeff ic ients ,   Mft-drag  ra t ios ,  and 
center-of-pressure  positione  for three Mghly swept three-uing tailless 

6.28 and angles of a t tack up t o  Eo. The Reynolds number based an body 
length varied frcm 5.5 million a t  Mach number 3.00 to 1.0 million a t  
Mach number 6.28. Each configuration had three ident ical  triangular-u=Lng 
panels of l o w  aspect  ratio  with ,2-perc.ent-thick  root  sections. The lead- 
ing edges of the  panels w e r e  rounded aid  had a constant radius equal t o  
the radiw of the vertex of t he  configuration. One of the wing panels 
‘was mounted ver t ica l ly  on the top of t h e   b d y  as  a ffn. The other two  
were mounted a8 the main l i f t i n g   surface^. Three separate configuration8 
werg  ob ta ined  by m o u n t i n g  t he  two Uf’ting w 5 n g ~  at. dihedral angles of Oo, 
rr1-5 , and -30°. The leading edges of the  wings were swept back 74O. The 
body of each configuration  consisted of a fineness-ratio-5  ogive and a 
fineness-ratio-2  cyUndrica1  afterbody. The tip of the  ogive was spher- 
ical and had a radius eqgal t o  5 percent of the maximum body radius. 

1 configurations .were determined frm tests a t  Mach numbers f r o m  3.00 to 

The maximum lift-drag ra t io s  decreased slightly with increasing 
negative dihedral =&,e throughout t h e   t e s t  Mach number rang:. A maxi- 
m lift-drag r a t i o  of 4.5 w a s  obtained for the  model with 0 dihedral 
at a Mach number of 4-26. The s t a t i c   l ong i tud ina l   s t ab i l i t y  remahed 
approximately constant with increasing negative dihedral angle, but 
decreased  slightly  with increasing Mach number. 

. 
A configuration  has  recently been  proposed in  reference 1 as an 

0 example of an airplane  sui table  for f l i g h t  st .high  supersonic  speeds. 
The proposed ajrplane configuration was c h o s q  mainly OR the basis of 



theoret ical   calcuht iona relating t o  drag,   l i f t -drag  ra t io ,  aerodynamic 
s t ab i l i t y ,  and aercdynanlc~heatfg.  Thus, for example, it was indicated 
tha t   the  use c;f extreme sweepback greatly rel ieves  the heating of the 
wdng leading edge, and, of-course,  reduces  the k a g  due t o  leading-edge 
bluntness. A symmetrical  arrangement of three wfngs, the vertices of 
which a r e  common t o  the vertex of the body, was selected on the basis of 
the more sat isfactory stabil i ty t o  be  expected from this type of config- 
uration aver me-ConVentional  airframes.  Resuts.of tests an such a con- 
f igurat ion (Bee refs. 2 and 3 )  indicated  that  eatisfactory  aerdynamic 
s t a b i l i t y  cazl in fact be  obtained, a t  least a t  Bubsollic speeds. 

To determine-the  high-speed aerodynanic character is t ics  of an air- 
plane  configuration  incorporating the features  suggested in r e f e r a c e  1, 
a highly swept symmetrical  three-wing t a i l l e s s  m d e l  was tes ted in the 
Ames 10- by 14-inch supersonic wind tunnel a t  Mach number8 f'rm 3.00 t o  
6,28 and angles of a t tack up io 12O, TKO other similar m o d e l s  with wing 
dihedral  angles  of Oo and -15 were also tested. The r e su l t s  of these 
t e s t s  are the  subject of  the  present  paper.. 
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NOTATION * 

drag coefficient . .  . .  . . .  ....... . . - .  . " 

lift coefficient,  - L 
ss 

mean aerodynamic chord of wing, including portion of wing submerged 
in body 

drag 
. .  .. . 

.. . " ." .- . " 

lift 

free-stream Mach number 

pitching moment 

free-stream aynamic pressure 

Reynolds number bssed on model length, 

." . 
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S area of two -panels, Fncludhg area submerged i n  body 

c ~p center-of-pressure location, percent body length from no8e 

a angle of attack 

P C  

I' dihedral -e, m e a s u r e d  from the horizontal 

The tests w e r e  conducted in the Ames 10- by 14-in~h supersmic 
tunnel. A detailed  descrfption of the wlnd tunnel and arildlimy  ewpruent 
may be found in reference 4, Aerdymmic forces and moments a c t a  011 
the models were  measuredoby m e a n s  of a three-component strain-gage balance. 
Angles of attack up to 4 were obtdned by pitchkg the model-support 
system.  Bent-st-  model supports were eraplayed t o  obtain anglea of attack 

the  difference between  measured base pressures and free-stream s ta t ic  
pressures, were subtracted f r o m  ~a8~red t o t a l  forces. As a result, the 
data presented do not  include  the  effects of body-base pressure. 

LI greater than bo. M a l  forces act- an the body base, as determined by 

The tes t  models w e r e  constructed of s tee l  and consisted. of three 
identical triangular-shaped panels m o u n t e d  on a body cansistlng of a 
fineness-ratio-5 ogive and a fineness-ratio-2 cylindrical afterbody. The 
t i p  of the ogive m s  spherical and had a radius equal t o  3 percent of 
the maximum body radius. As shown In figure 1, the panels were mounted 
t o  form a vertical fin and two l i f t k g  surfacea or w i n g s  wip l eaf ig-  
edge  sweep asglee of 74O and an aspect r a t i o  of 1.15 (I? = 0 ). The root  
sections of the were 2 percent thick. Tbe leading edges were 
rounded and had a radius equal to the rad2.u~ at  the vertex of the body. 
The a i r fo i l  sectSon is defhed in figure 1. Three models were canstructed 

- and were s h L l a x  exceptofor the w3ng dihedral-angles: Thus, one m o d e l  
had horizontal  wings (0 dihedral) whereas the  other two had wings with 
-15O and -30° dihedral anglee. 

Xft, drag, and pitching-moment coefficients were  determFned for all 
three models a t  angles of  .attack to about 7 3 O  at Mach numbers of 3.00, 
4.26, 5.04, and 6.28-l The free-stream Reynolds numbers based on the 
length of the models were: 

. 
8 lPitching-mment data at M = 6.28 were obtained only a t  angles of 

attack up to kO. 

L 
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Reynolds number, 
Mach  number m i l l i o n  

NACA RM A55K21 

3.00 

3-04  
4.26 

6.28 

5.5 
4.8 
29 3 
1.0 

The v a r h t i o n  in  Mach number i n  the  region of the   t es t   sec t ion  where 
the models were-located  did  not exceed k0.E at Mach numbers from 3.00 t o  
5.04 and k0.04 a t  Mach number 6.28. Deviations in free-stream Reynolds 
number did not exceed &3O,OOO frosl the  values given. Errors in angle of 
a t tack  due t o   u n c e r t a h t i e a  in corrections for stream =@;le and f o r  
deflection of the model-suppart ~ p t m . W e r e  legs. ~JBJI W . 2 O P  . . .. 

The precision of the ex~er'fmental results.-w~~_ affected by inaccura- 
c ies  i n  the  force measurements obtained by the  balance syBtem, as well 
as uncertainties In the determinatian of- free-atream dynamic pressurea 
and baae  pressures. The resul t ing maximum poeafble  error8 Fn the  aero- 
dynamic force and m m a t  n o e f f i c i e n b -  a r e  shown i n  the following table:  

.. . 

c 

RESULTS APID DISCUSSION 

Results of the   t es t s  of the  three models -e presented in table  It 
where lift, drag, pitching-moment and normal-force coefficients,  l i f t -  
drag r a t io s ,  and centers of presgure a t  various angles of  a t tack  are  
t abu la t ed   fo r   a l l   t he  models over t h e   t e s t  Mach number range. A l l  of 
these data a re  based on the same reference  area which is  equal t o  twice 
the plan area of oae-@anel,-including the portion submerged in the  body. 
Graphical  presentation of some of the data i s  also included t o  ahar the 
more important  trends. It will be  noted i n  f igure 2, for  example, that 
although the  differences in l i f t  between the   th ree  teat models are small,. 
the  model with r = -15O has the higheat l i f t  at the higher anglee of 
attack, whereas the symmetrical model (r. = -30a) tends t o  have the Iaweet 
l i f t .  These resu l t s  differ from those  obtained at subsonfc speeds 
(ref. 3 )  where it was found that   the  lift coefficient  decreased approxi- 
mately as the  square af the cosine of the  d i l ~ e d r a l .  angle. It shollld be. 

. 
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noted, however, that  the leading edges of the  present tes t  models are 
considerably more blunt  than those of reference 3*. The effect of leading- 
edge bluntness on lift a t  CL = Oo is clearly evident in figure 2. Thus, 
it is observed that although the  pressure  forces on the blunt 1- 
edges are balanced in the case of the symmetrical model (r = -30°), these 
forces produce negative Lift when the wings are   a t  md -15O dihedral 
anglee. It may a lso  be noted in figure 2, however, that  the  initial. l i f t -  
curve slopes do decrease approximately as the square of the cosine of the 
dihedral angle. This is perhaps more clearly  illustrated in figure 3 
where the  ini t ia l  slopes taken from figure 2 are shown plotted as a flmc- 
tian of mch number. The predgctions of linear a i r f o i l  theory for  the 
wlag alone (I' = Oo) are  also shown for comparative  purposes fn the range - 

of  Mach numbers mere the leading edges are  supersmic. It i s  interesting 
t o  note that  the percentage effect of dihedral angle on lift-curve  slope 
is  approxhately ccms-t with increasing Mach number. 

* 

The variations of lift coefficient with drag  coefficient, pitch" 
L moment coefficient, and lift-drag  ratio  for 'the three models are shown 

%x angles of attack) except near l i f t  coefficients where the maximum l i f t -  

3n figure 4. It can be seen that, fn general, the m o d e l  with r = -15' has. 
the Lowest drag for a given l i f t  coefficient  (particularly  at  the higher 

drag ratios occur. A t  these lift coefficients (near (L/D)-) the model 
with 00 dihedral has the lowest drag and hence, the highest l if t-drag 
ratios. The symmetrical m d e l  (I' = -3O.l has generally  the  highest drag 
for a given l i f t  coefficient and, thus, yields"the lowest lift-drag ra t ios .  

The variations of pitching-moment coefficient with l i f t  coefficient 
are nearly the same for a l l  three  configurations and are approximately 
linear over the  test range of angles of attack and Mach nmbers (see 
fig. 4).  It is  a l s o  indicated i n  figure 4 that  the  static  longitudinal 
s t a b i l i t y  of  each  model decreases slightly with increasing Mach number. 
This trend ia m o r e  clear ly  illustrated in figure 5 where it can be seen 
that  the change in  stabil i ty from Mach number 3-00 t o  Mach number 6.28 
represents a shift  in the  neutral  point of about 1-1/2 percent of the 
mean aerodynamic  chord.  Experimental results (.see ref. 3 )  obtained a t  
subsonic speeds for  configuratims similar t o  those employed i n  the 
present tes ts  ai-e also shown 5x1 figure 3 .  It is indicated  that, in 
general,  the  neutral points s h i f t  rea& on all configurations in going 
from Mach number 0.25 t o  Mach  number 3.00, This shift is  a p p r b t e l y  
7 percent of the mean  aerod-c chord in the case of the symmetrical 
m o d e l  (r = -30~). 

The variations of maximum lift-drag  ratio w i t h  Mach number are 
presented in figure 6. It is  observed i n  thia f e that  the model with 

* 0' dihedral y3elds the  highest  lift-drag  ratio = 4.5 a t  M = 4.26). 

* approldmately 5 t o  7 percent over the t es t  Mach number range. It should 

Hawever,- th i s  ra t io  decreases only slightly with increaaing negative 
dihedral angle, the  total decrease (from I' = Oo t o  I' = -30') be ing  

be noted tha t  f o r  Mach numbers 3.00 and 4.26 where the t e s t  Reynolds 

r 



numbers were eseent ia l ly   the same, the maximum l i f t -drag   ra t ios  are 
nearly  the same.  Bowever, a t  Mach numbers 5.04 and 6.28 where the t e a t  
Reynolde numbers were substantially lower, the   l i f t -drag ratioe are aig- 
nif icant ly  lower. Thus, it is  indka ted  that the decrease in  maximum 
l i f t -d rag   r a t io  with  increasing Mach  number above M = 4.26 is  due 
primarily  to  the  increase Fa skin-friction drag associated with the 
decrease of test Reynolds numbero The effect  of ReynoldB  number on lift- 
drag  ra t io  is more clearly ahown i n  f i g m e  7 where e e t b t e d  lift-drag 
r a t io s  for a constant Mach  number of 5.04 are plotted as a function of 
Reynolds nmber.2 It is  indicated i n  tb.b figure that if the M = 5.  & 
t e s t s  were conducted a t  a ~ e y n o ~ s  number of 5 m ~ ~ ~ o n  (foe., a test 
Reynolds number approximately the same as tha t  for the lower Mach numbere) 
instead  of 2.-3 million, a maxirmrm l i f t -d rag   r a t io  of the same order as 
those at  the lower Mach numbers  would have be= .obtained..  Correspmd- 
ingly, an increase i n  l if t-drag  ratio  with an increase of t e a t  Reynolds 
number .a t  M = 6.28 would also be. expected... .More.oye3. .It hd ica t ed  
tha t  lift-drag ratios- of the  order of 5 c a ~ l  be  expected for full-male 
Reynolds numbers (of the order  of  15 miilioii), provided laminar flow can 
be maintained. It m y  be noted, howeva, that   the  estimated  l if t-drag ." 

r a t io s   a r e  somewhat lower than those  predicted i n  reference 1. This can 
be a t t r ibu ted  t o  the fact that  the  test   configurations had considerably 
more leading-edge  bluntness than the proposed  cc&igxration (ref.  1). 

" . . . . . . . . . . - 

.. . - 
I 

cmcLusrom 

The aerodynamic character is t ics  of three  highly swept three-wing 
tailless configurations  having wing dihedral  anglee of Oo, -15', and -30' 
have  been determined fYom t e s t s . &  Mach numbers. A.? 3.00 t o  6.23 and 
angles -of a t tack UF t o  12'. The Reynolds number based. &: body length 
varied fram 3.5 dllion at Mach number 3.00 t o  1.0 m i l o n  at &ch number 
6.28, The following conclusione.are  drgwl.frcqthe - - . ". results of these t e s t s :  

- ._ 

. -  

1. The differences in lift between the t h r e e   t e s t  m o d e l s  8re small. 
The Initial UFt-curve slopes decrease a t h  increasing  negative dihedral 
angle and, as would he expected, a l so  decrease  with increasing Mach 
number 

- 

?he  l i f t -drag  ra t ios  shown in  figure 7 were estimated by means of 

the approximate re la t ion  (L/D)= = 1/2 J ( C b )  /CJJ~. The l i f t -curve 
slope, ( C L , ) ~ ,  was determined from the  experimental results f o r  a Mach 
number of 5.04 (see  f ig.  3). The effects  of varying Reynolds number 
on CD, was e s t k t e d  by m e a n s  of t h e  Elasius re lat ion for laminar akin- 
f r ic t ion   coef f ic ien t  . 

a=o 
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2. The Oo dihedral model was found t o  have a maxinum l i f  t-drag 
ratio of 4.5 a t  a %ch number of 4.26. Increasing the dihedral angle 
from 0' t o  -30° decreases the maximum lift-drag  ratio apprarimately 5 to 
7 percent over the  teat Mach number range. This ratio also decreases 
with increasing MEtch number due primarily t o  the fncreaaed sbln-friction 
drag associated with t h e  decrease of the  teat Reynolds number. b 

3. The s ta t ic  longitudirt&l S t 8 b f l f t y  remains approximately c o n s k t  
FTith increasing  negative dfhedral angle, but decreases slightly as t h e  
Mach number is Increased. 

Ames Aeronautical Iaboratory 
National Advisory  Conrmittee f o r  Aeronautics 

Moffett Field, Calif., Nov. a, 1955 
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Figure 1.- Detalls of t e s t  models. 
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(c) M = 5.04 (dl M = 6.28 

Figure 2.- Variation of lift c o e f f i c i a t  xith angle of attack. 
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Figure 3. -  Variation of initial lift-curve slope with Mach'number. 
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Figure 5.- Variation of s ta t ic  longitudjnal stability near zero l i f t  with Pach number 
(moment reference: 37 percent of E ) .  
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Figure 6. - V a r i a t i o n  of maximum lift-drag ratio and Reynolds number 
with Mach number. 
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Figure 7.- Variation of maximum lift-drag ra t io  with Regnolds number for aylmaetrlcal. 
configuration (I? = -30') at M = 5.04. 
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